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ABSTRACT

Recent progress in multimodal AI and ‘language-aligned’ visual representation
learning has rekindled debates about the role of language in shaping the human
visual system. In particular, the emergent ability of ‘language-aligned’ vision
models (e.g. CLIP) – and even pure language models (e.g. BERT) – to predict
image-evoked brain activity has led some to suggest that human visual cortex it-
self may be ‘language-aligned’ in comparable ways. But what would we make of
this claim if the same procedures could model visual activity in a species with-
out language? Here, we conducted controlled comparisons of pure-vision, pure-
language, and multimodal vision-language models in their prediction of human
(N=4) and rhesus macaque (N=6, 5:IT, 1:V1) ventral visual activity to the same set
of 1000 captioned natural images (the ‘NSD1000’). The results revealed markedly
similar patterns in model predictivity of early and late ventral visual cortex across
both species. This suggests that language model predictivity of the human vi-
sual system is not necessarily due to the evolution or learning of language per se,
but rather to the statistical structure of the visual world that is reflected in natural
language.

1 INTRODUCTION

The idea that language shapes how we ‘see’ the world has long been one of the most actively debated
ideas in cognitive (neuro)science (1; 2; 3; 4; 5), and has evolved through many forms over that time.
A recent evolution of this idea has manifested in the form of competing hypotheses about the extent
to which high-level human visual cortex is ‘language-aligned’ – or, in other words, the extent to
which lingustic or linguistically-learned structure is evident in visual brain responses (6; 7). The
resurgence of this debate is predicated in large part on two seminal findings in research on modern
deep learning models: first, the finding that ‘language-aligned’ machine vision models (e.g. CLIP)
are some of the most predictive models to date of image-evoked activity in the visual brain (8; 9);
and second, the finding that even pure-language models (e.g. BERT) are capable of predicting
image-evoked brain activity by way of image captions alone (10; 11).

Here, we apply a logical razor to this debate in the form of assessing whether these two key findings
hold in the brain of a species that does not have language. We call this the ‘monkey razor’, and define
it as follows: If the ability of ‘language-aligned’ vision models or pure-language models to predict
image-evoked brain activity is indeed evidence of language having (re-)shaped visual representation,
we should not find similar predictivity in monkeys.

We used encoding models fit to the feature spaces of a diverse set of pure-vision, pure-language
(LLMs), and multimodal (language-aligned) vision (VLMs) models to predict image-evoked brain
activity in the ventral stream of 4 humans and 6 rhesus macaques shown the same set of 1000
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natural images from the Natural Scenes Dataset (NSD) (12). The brain-likeness of the pure-vision
and language-aligned vision models was assessed on the images themselves. The brain-likeness of
the pure-language models was assessed using an average of the embeddings for the first 5 captions
associated with each image (collected from metadata for the MS-COCO dataset (13), from which
NSD images are curated).

We find that vision and language models provided accurate predictions of neural responses in high-
level ventral stream regions of both human and macaque visual cortex. The majority of variance
explained by pure-vision and pure-language models in human OTC was shared with macaque IT.
The remaining ‘uniquely human’ variance was equally well explained by the two model modalities.
Together, these results suggest that language model predictivity of human visual cortex is likely not
due to language learning or true representations of language, but instead a reflection of a convergence
between vision and language models based on the large-scale, end-to-end statistical learning that
defines them both.

2 RESULTS

General Approach The encoding models for the human (fMRI) brain activity were fit to reliability-
selected voxels (NCSNR > 0.2) in a broad mask of early visual cortex (EVC, N=15326 voxels) and
occcipitemporal cortex (OTC, N=29840 voxels), with both anatomical and functional criteria as the
basis of inclusion. The encoding models for the monkey (electrophysiology) brain activity were fit
to multi-unit responses (i.e. average firing rates in a 150ms window) from arrays placed either in
macaque V1 (N=34 units) or inferotemporal (IT) cortex (N=394 units). Details on all aspects of our
approach are available in Section 4.

Figure 1: (A) Overview of modeling procedure: Image-evoked visual brain activity was predicted
from the image (for vision models) or the image captions (for language models), using a unit-wise
(voxel / neuron) encoding analysis. (B) Encoding accuracies from the most brain-like layer of a se-
ries of (unimodal) pure vision and pure language models in prediction of both human occipitotem-
poral cortex (OTC) and macaque inferotemporal cortex (IT). Individual points are the accuracies
for each model. The horizontal, semitranslucent rectangles extending across the dots are the means
±95% bootstrapped CIs (across models) per model type (modality).

Vision and Language Models Predict High-Level Regions in Human Ventral Stream Commen-
surate with previous findings (14; 10), we found that pure-language model embeddings over image
captions could predict high-level human ventral visual activity almost as accurately as pure-vision
models (Figure 1B: Top Row, Table 1: Row 1). There was not a substantial difference between
pure-vision and language-aligned vision models in predicting OTC responses. In contrast, language
models performed far worse than both types of vision models in predicting early visual cortex activ-
ity (Table 1: Row 3). The poor performance of these models in early visual cortex provides a sanity
check, demonstrating that the LLMs are not just statistically overpowered in general.
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Vision and Language Models Predict High-Level Regions in Macaque Ventral Stream Apply-
ing the same encoding procedures with the same stimuli to prediction of brain activity in macaque
visual cortex, we found that, as in humans, pure-language models are remarkably accurate in predict-
ing high-level ventral visual activity (Figure 1B: Bottom Row, Table 1: Row 2). Also as in humans,
we found that pure-language models perform poorly in prediction of early visual cortex (Table 1:
Row 4). There was also no substantial difference between pure-vision models and language-aligned
vision models. There was, however, a slightly more pronounced advantaged of pure-vision over
pure-language models in macaque IT (0.441 versus 0.338) compared to human OTC (0.365 versus
0.332). A time-resolved encoding analysis suggests that the pure-vision and pure-language mod-
els have a similar time course of predictivity, further underscoring the overlap between the learned
representations across modalities (Supplementary Figure A1).

Better Models of Human Ventral Stream are Also Better Models of Macaque Ventral Stream
The results above demonstrated that vision and language models perform largely similarly across the
species; but what about the more granular comparison instantiated by the rank-order correlation of
models across the species (Figure 1B). For pure-vision models, this correlation was ρ = 0.53 [0.49,
0.56] (p = 0.006), suggesting individual vision models are similarly predictive of both species. For
pure-language models, this correlation was 0.64 [0.61, 0.65] (p = 0.009) – slightly, but significantly
higher than the interspecies correlation for the vision models (with bootstrapped mean differences
(∆ρ) = 0.053 [.032, .076]; and differences > 0 in 976 / 1000 bootstraps, p = 0.023). In short, better
language models of human visual cortex are also better language models of macaque visual cortex.
Accordingly, hypotheses about why some language models do better than others in their prediction
of human visual cortex should apply commensurately to macaque visual cortex, as well.

Table 1: Human-Monkey-Model Comparisons Summarized
Encoding Score

Species Region Model Type Group Mean [95% BCI]

Human OTC
Vision 0.365 [0.336, 0.395]
Language 0.332 [0.298, 0.375]
Multimodal 0.365 [0.336, 0.393]

Macaque IT
Vision 0.441 [0.36, 0.523]
Language 0.338 [0.265, 0.42]
Multimodal 0.415 [0.343, 0.488]

Human EVC
Vision 0.335 [0.302, 0.356]
Language 0.178 [0.153, 0.219]
Multimodal 0.333 [0.296, 0.355]

Macaque V1
Vision 0.341 (1 Subject)
Language 0.107 (1 Subject)
Multimodal 0.348 (1 Subject)

Table 2: Interspecies Unique Variance Analysis Summarized
Unique Shared (2-Way) Shared (3-Way)

Regression Species Vision Language
Species+

Vision
Species+
Language

Vision+
Language

All Predictors

Human ∼ Macaque ~.0% 18.4% 14.6% 8.3% 12.1% ~.0% 46.6%
Macaque ∼ Human ~.0% 11.8% ~.0% 11.5% 25.4% 13.1% 38.2%
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Uniquely Human Variance is Equally Well Predicted by Vision and Language Models The
slight difference in language versus vision models in predicting macaque IT relative to human OTC
may be due to multiple factors, including the species-specific recording modalities and preprocess-
ing steps (e.g., electrophysiology versus functional MRI) or differences in visual experience of the
human versus macaque subjects.

Figure 2: Results from a 3-way variance par-
titioning analysis designed to quantify the vari-
ance in human visual brain activity attributable
uniquely to vision and uniquely to language,
all while accounting for the variance shared
with macaque visual brain activity. This fig-
ure shows the variance partitioning of human
OTC across the 3 key predictors for this anal-
ysis: macaque IT, the most-predictive pure
vision-model (Dino-ResNet50) and the most pre-
dictive pure-language model (SBERT-MPNet-
PML). Most of the variance in this analysis is
shared across both macaques and models; the
variance attributable uniquely to either or the
models is comparable across vision and language
– with a slight advantage to vision as the greater
source of ‘uniqueness’ between the species.

The question of most relevance, here, though,
is whether the difference is attributable primar-
ily to language (or at least, language as encoded
in the pure-language models). To assess this di-
rectly, we performeded a 3-way unique variance
analysis, predicting human OTC activity with all
seven combinations of the groupings of three
predictors: macaque brain activity, vision and
language model embeddings (using the model
embeddings for the most OTC-predictive model
from each set).

The goal of this analysis was to understand how
well different types of models predict ‘uniquely
human’ neural signals in OTC. The logic be-
ing that if the difference between humans and
monkeys is a difference attributable to language
(over and above vision), then the unique vari-
ance explained by language models should be
greater than the unique variance explained by
vision models. We find this was not the case
(Figure 2, and Table 2). The majority (8.3% +
12.1% + 46.6% = 67%) of the explainable vari-
ance in human OTC was shared with macaque
IT and at least one of the models. We note
there was almost no shared variance between
the macaque and human data that was not also
shared with one of the models. Of the remain-
ing ‘uniquely human’ variance, a similar amount
was attributable to the vision (18.4%) and lan-
guage language (14.6%) models, with slightly
more unique variance explained by the vision
model. The relative symmetry of the unique
variances suggests that the difference between
human OTC and macaque IT is not a function of
language, but may instead be a reflection of any
number of the modes of difference in species,
recording modality, or experimental setup.

Voxel-wise maps of the variance unique to humans and each model modality reveal slightly different
anatomical patterns however, with vision models explaining more variance unique to humans in
posterior regions, and language models in anterior and lateral regions (Figures A3-A6).

3 DISCUSSION

Here we show that the ability of ‘language-aligned’ vision models and pure-language models to
predict image-evoked brain activity in human high-level visual cortex is likely not evidence of lan-
guage having reshaped vision. We find similar trends using these models to predict visual brain
responses in non-human primates, and demonstrate that those differences which do exist between
humans and non-human primates are not directly attributable to the structures of language, as cap-
tured by LLM embeddings, alone. Such is the nature of the ‘monkey razor’: If, caeteris paribus,
an experimental effect holds in both humans and monkeys, that effect cannot be attributable to the
structure, function, deployment, or learning of language per se. Thus, the more likely explanation
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is that the representational overlap between pure-language models and the high-level primate visual
brain reflects a structure learnable in large part through the hierarchical encoding of natural image
statistics. Language (as learned by language models) may approximate the representational end-
points of this process, but only to the extent that these statistics are reflected in the language we use
to describe the world around us (a world the language models themselves cannot actually ‘see’).

The observations we have made in primate brain prediction align well with recent findings in AI
research that show vision and language models seem to be converging on common – ‘platonic’ (15)
– representations (16; 17), even in the absence of explicit alignment. And while we note that this
particular alignment (between vision and language models) may be more a function of the effective
overlap in the training data of the internet than of shared world knowledge, it does seem to suggest
again that language reflects visual structure. However, recent research suggests that this shared
structure between vision and language is limited to pictoral visual descriptions of a scene (18),
and that language models predictivity of visual cortex does not extend to linguistic descriptions of
dynamic events (19) or more abstract conceptual features of an image (20).

Interestingly, we do find a small but consistent difference in the voxel-wise patterns of "uniquely
human" variance explained by vision versus language models (Figures A3-A6). Of note, language
models are slightly more predictive in more anterior and lateral vision regions, particularly the ex-
trastriate body area (EBA), consistent with prior research showing an advantage of language-aligned
vision models in these regions (8). The EBA is involved in social processing and has been recently
shown to represent configural information about bodies and objects in a scene (21; 22). Such rela-
tional representations may explain the advantage of language models in this region, and these results
suggest that perhaps some aspects of these representations may be unique to humans.

Further work is needed to make sense of the lingering difference, however small, between language
model predictivity of human OTC and macaque IT. One major factor that merits further scrutiny here
is the translation between different neural recording modalities: fMRI signals, for example, may in-
clude later visual components (including feedback) not evident in the electrophysiological signals.
Differences in experimental setup and task demands (i.e. stimulus duration, ISI, and freeviewing
versus fixation) may also affect the extent to which semantic content is captured in visual cortex
(23). It is also important to note the drastically different visual diets of the human and macaque sub-
jects, the latter having limited exposure to varied natural scene statistics. Finally, and perhaps most
importantly, we should aspire to continue collecting visual brain data in both species that pushes
the limits of representation learnable through image statistics alone—and extends more explicitly
into the kinds of conceptual territories where the structures of language are most indispensable for
understanding.

4 MATERIALS AND METHODS

4.1 HUMAN DATA

Human fMRI data were used from the Natural Scenes Dataset (12), which contains measurements
of over 70,000 unique stimuli from the Microsoft Common Objects in Context (COCO) dataset120
at high resolution (7T field strength, 1.6-s TR, 1.8mm3 voxel size). We used the brain responses
to the "NSD1000", the set of 1000 COCO stimuli that overlapped between subjects, and limited
analyses to the 4 subjects (subjects 01, 02, 05, 07) that saw these images with at least 3 repetitions.
The 3 image repetitions were averaged to yield the final voxel-level response values in response to
each stimulus. Beta responses were estimated using the GLMsingle toolbox (24), which implements
optimized denoising and regularization procedures to accurately measure changes in brain activity
evoked by experimental stimuli.

We performed voxel selection to improve signal-to-noise ratio (SNR) in our target data using a
reliability-based voxel selection procedure (25) to select voxels containing stable structure in their
responses. Specifically, we use the NCSNR (“noise ceiling signal-to-noise ratio”) metric computed
for each voxel as part of the NSD metadata as our reliability metric. In this analysis, we include
only those voxels with NCSNR > 0.2. After filtering voxels based on their NCSNR, we then filtered
voxels based on region-of-interest (ROI) as described in prior work (26).
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4.2 MACAQUE ELECTROPHYSIOLOGY DATA

Electrophysiological multiunit activity was recorded from six macaque monkeys (5 macaca mulatta,
1 macaca nemestrina), using chronically implanted microelectrode arrays. In one subject, a 32-
channel floating microelectrode array was implanted in primary visual cortex (V1). Three subjects
were implanted with microwire brush arrays targeting anterior IT (aIT) cortex (64 channels, 64
channnels, 128 channels), and two subjects were implanted with microwire brush arrays (both 64
channels) targeting central IT (cIT) cortex. Cortical areas were localized using a combination of
anatomical landmarks, structural MRI, and functional MRI. To consider the most analogous regions
to human fMRI data, we grouped all IT recordings and report the average scores in V1 and IT.

Images were presented at the center of each subject’s population receptive field while subjects pas-
sively fixated on a point at the center of the screen. Subjects were rewarded for maintaining gaze at
the fixation point for the duration of the image presentation. Images subtended 6 degrees of visual
angle and were presented for 150ms with an interstimulus interval of 167 ms. Receptive fields were
mapped in a prior session by rapidly presenting a separate set of small images (2 x 2 degrees size)
at a dense grid of locations spaced apart by 1 degree. We presented a total of 1110 unique images to
each monkey, including 110 fLoc functional localizer images (27) and 1000 COCO images drawn
from the Natural Scenes Dataset (12). Each image was viewed a median of 19-40 times over six
recording sessions by each subject to allow for trial-averaging responses across repetitions. We
modeled the multi unit activity in each electrode in the 0-150 ms window following stimulus onset.
For two monkeys (M1 and M2) we also modeled the time-resolved IT multi unit activity from 0-500
ms post stimulus onset in overlapping 150 ms bins, sampled every 10ms.

4.3 MODEL SELECTION

We tested vision-only, language-only, and vision-language deep neural networks.

Vision-only models included N=13 purely self-supervised visual contrastive-learning models from
the VISSL model zoo (28), Dino-V1 variants (29), and one instance-level prototype contrastive
learning (IPCL) model (30). Vision-language models consists of N=10 models from the OpenAI
CLIP, OpenCLIP, SLIP, and PyTorch-Image-Models repository (31; 32; 33; 34). Our sample of
large language models consisted of N=16 models from Hugging Face and the SBERT repositories
(35; 36).

4.4 MODEL-BRAIN MAPPING

4.4.1 FEATURE EXTRACTION

We utilized DeepJuice (26), a python package in alpha-release that allows for memory efficient
feature extraction from each layer of a DNN. We extracted the intermediate representations from
every unique computational submodule (referred to here as layers) of every model.

We then used GPU-optimized sparse random projection (SRP) implemented in DeepJuice to project
the activations in a 5920-dimensional feature space based on the Johnson–Lindenstrauss lemma
with ε = 0.1. The sparse random projection matrix consists of zeros and sparse ones, forming nearly
orthogonal dimensions, which are then normalized by the density of the matrix (the inverse square
root of the total number of features). The layerwise feature maps are then projected onto this matrix
by taking the dot product between them. The output of the procedure is a reduced layerwise feature
space of size of 1000 images × 5920 dimensions with a preserved representational geometry. Note
that in cases where the number of features is less than the number of projections suggested by the
JL lemma, the original feature map is effectively upsampled through the random projection matrix,
again yielding a matrix of 1000 × 5920 dimensions.

4.4.2 UNIT-WISE LINEAR ENCODING

We computed a linear encoding model for each unit (voxel or electrode) as a weighted combination
of the 5920 model dimensions, using brain data from our training set of 500 images. The Deep-
Juice fitting procedure for each voxel leverages a custom GPU-accelerated variant of SciKit-Learn’s
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cross-validated ridge regression function (‘RidgeCV’), a hyperefficient regression method that uses
generalized cross-validation to provide a LOOCV prediction per image (per output).

This fit was computed over a logarithmic range of alpha penalty parameters (1e-1 to 1e7), to identify
each unit’s optimal alpha parameter. The RidgeCV function is modified in DeepJuice in order to
select the best alpha using Pearson correlation as a score function (the same score function used for
overall model evaluation), and to parallelize an internal for-loop for greater efficiency. This yielded
a set of encoding weights for each unit.

We use these weights to predict unit-wise responses in the held-out 500 test videos. Encoding score
is calculated by correlating actual and predicted unit-wise responses. Unit-wise scores are then
averaged in each region (e.g., human OTC or macaque IT).

4.5 VARIANCE PARTITIONING

To test how much of the difference between vision and language models in the prediction of macaque
visual cortex is a difference attributable uniquely to language, we performed a 3-way variance parti-
tioning analysis, closely following a methodology outlined by Lescroart et al. (37) and tutorialized
by Tarhan (38). This 3-way analysis entails the fitting of 7 cross-validated regressions, always with
one of the two species’ visual brain activity (human or macaque) as the primary outcome, but with
different permutations of 3 predictors (the brain activity of the other species, the best-performing
pure vision model, and the best-performing pure language model). Taking human brain activity as
the primary outcome, we can enumerate these regressor permutations exhaustively as follows:

1. Univariate macaque visual brain activity (M).
2. Univariate vision model prediction (V ).
3. Univariate language model prediction (L).
4. Bivariate macaque + vision model (M+V ).
5. Bivariate macaque + language model (M+L).
6. Bivariate vision + language model (L+V ).
7. Trivariate combination of macaque, vision, and language model (M+V +L)

Once (noise-ceiling normalized) scores have been obtained for all 7 of these regressions we can
derive the unique and shared (explainable) variances for all 3 of our predictors as follows:

Unique variances of M, V , L:
1. MUnique = (M+V +L)− (L+V )

2. VUnique = (M+V +L)− (M+L)

3. LUnique = (M+V +L)− (M+V )

3-way shared variance:
4. (M+V +L)Shared = M+V +L−2∗ (M+V +L)+MUnique +VUnique +LUnique

2-way shared variances:
5. (M+V )Shared = M+V − (M+V )− (M+V +L)Shared

6. (M+L)Shared = M+L− (M+L)− (M+V +L)Shared

7. (V +L)Shared =V +L− (V +L)− (M+V +L)Shared

With or without noise-ceiling normalization, the initial units of these unique and shared variances are
proportions of the total variance explained by the trivariate regression (M+V +L). Without noise-
ceiling normalization, the units are the proportion of total variance explained. With noise-ceiling
normalization, the units are the proportion of total explainable variance explained.

(Descriptive, natural language versions of these derivations are available in Appendix A2).
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Appendix + Supplementary Information

A1 DIFFERENCES IN PREDICTION OVER TIME

In our main analysis of macaque visual activity, we assess for difference between unimodal vision
and language models in predicting a single 150ms window of neural activity. This leaves open the
question of whether there differences between vision and language model prediction vary across
time. Perhaps language model predictions (hypothetically more "conceptual" in nature) peak later
than vision model predictions (hypothetically more "perceptual" in nature)?

To answer this, we modeled the time-resolved IT multi unit activity (from 0-500 ms post stimulus
onset in overlapping 150 ms bins, sampled every 10ms) in 2 monkeys (Monkey 1 and Monkey 2).
Results from this analysis are shown in A1

Figure A1: A Time-resolved encoding scores for two monkeys from IT multi-unit activity (150 ms
bins, 10 ms step size). Thin, semitransparent lines show scores for individual unimodal language
(blue) and unimodal vision (purple) models. Thick, opaque lines are the fits of a generalized additive
model (GAM) controlling for subject-level variance with an additive term and model-level variance
with a random effect term. B Time-resolved encoding z-scores obtained after normalizing the scores
of each model within their respective modality (allowing for a direct visualization of the overall
overlap in the trends across time.))

Results from this analysis make strikingly clear that while the difference between vision and lan-
guage model prediction is persistent and stable from 100ms to 350ms post stimulus onset, there
is no difference in the overall trends of each. Visually, this parity in overall predictive trend across
model modality is most evident in A1B (which depicts the time-varying predictions of each model
after their scores are normalized within their respective modality). Statistically, this parity is evi-
dent in a bootstrapped cross-correlation (lag 0) of r=0.995 [.993, .996] in Monkey 1 and .997 [.996,
0.998] in Monkey 2, and the almost identical complexity / effective degrees of freedom (EDF) –
8.95, and 8.96 for vision and language, respectively – in the curves fit by a generalized additive
model (thin-plate spline regression) controlling for subject-level variance (with an additive term)
and model-level variance (with a random effects term).

In short, while pure language models may predict less variance in macaque visual brain activity
than pure visual models at peak, the predictions of both modalities seem to increase or decrease in
almost-exact parallel across time.

A2 FURTHER DETAILS ON VARIANCE PARTITIONING

Side-by-side narrative and formulaic descriptions of all terms in the variance partitioning analysis
are available in the enumerated lists below. A plot showing side-by-side comparisons of the variance
partitioning analysis for both human OTC and macaque IT is shown in A2.

Unique (unshared) variances:
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1. MUnique = (M+V +L)− (L+V )

The variance in human brain activity explained uniquely by macaque visual brain
activity M is the trivariate regression (M+V +L), minus the bivariate regression
not involving the macaque activity: the vision and language models (L+V ).

2. VUnique = (M+V +L)− (M+L)

The variance in human brain activity explained uniquely by the vision model is
the trivariate regression (M+V +L), minus the bivariate regression not involving
the vision model: the macaque and language model (M+L)

3. LUnique = (M+V +L)− (M+V )

The variance in human brain activity explained uniquely by the language model is
the trivariate regression (M + V + L), minus the bivariate regression not involving
the language model: the macaque and vision model (M+V ).

3-way shared variance:
The variance in human visual brain activty explained jointly by all 3 predictors
(macaque visual brain activity, vision model, and language model) is the sum
of the variance for each individual regression M plus V plus L minus twice the
trivariate regression (M +V + L) plus the unique variance for each univariate
predictor: MUnique plus VUnique plus LUnique.

2-way shared variances:
4. (M+V )Shared = M+V − (M+V )− (M+V +L)Shared

The variance in human brain activity explained jointly by the macaque visual
brain activity and the vision model is the sum of the univariate regressions of
each M plus V minus the bivariate regression of both (M+V ) minus the variance
shared across all (M+V +L)Shared .

5. (M+L)Shared = M+L− (M+L)− (M+V +L)Shared

The variance in human brain activity explained jointly by the macaque visual
brain activity and the language model is the sum of the univariate regressions of
each M plus V minus the bivariate regression of both (M +V ) minus variance
shared across all (M+V +L)Shared .

6. (V +L)Shared =V +L− (V +L)− (M+V +L)Shared

The variance in human brain activity explained jointly by the vision and lan-
guage models is the sum of the univariate regressions of each V plus L minus
the bivariate regression of both (M +V ) minus the variance shared across all
(M+V +L)Shared
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Figure A2: Results from a 3-way variance partitioning analysis designed to quantify the variance
in macaque visual brain activity attributable uniquely to vision and uniquely to language, all while
accounting for the variance shared with human visual brain activity. A is a reproduction (for side-
by-side comparison) of the same variance partitioning analysis in 2, without summation of the
shared variance terms. B is the variance partitioning of macaque IT across the 3 key predictors:
human OTC, the most-predictive pure vision-model (Dino-ResNet50) and the most predictive pure-
language model (SBERT-MPNet-PML). Apart from the preservation of the individual shared vari-
ance terms, all plotting conventions are the same as in Figure 2.
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Figure A3: Cortical flat maps showing voxel-wise results of 3-way variance partitioning analysis for
Subject 01 (Figures 2, A2A) across 3 key predictors: macaque IT, the most-predictive pure vision-
model (Dino-ResNet50) and the most predictive pure-language model (SBERT-MPNet-PML). Top:
Voxel-wise unique variance explained by the best vision model. Bottom: Voxel-wise unique vari-
ance explained by the best language model.
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Figure A4: Cortical flat maps showing voxel-wise results of 3-way variance partitioning analysis for
Subject 02 (Figures 2, A2A) across 3 key predictors: macaque IT, the most-predictive pure vision-
model (Dino-ResNet50) and the most predictive pure-language model (SBERT-MPNet-PML). Top:
Voxel-wise unique variance explained by the best vision model. Bottom: Voxel-wise unique vari-
ance explained by the best language model.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2025. ; https://doi.org/10.1101/2025.03.05.641284doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.05.641284
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure A5: Cortical flat maps showing voxel-wise results of 3-way variance partitioning analysis for
Subject 05 (Figures 2, A2A) across 3 key predictors: macaque IT, the most-predictive pure vision-
model (Dino-ResNet50) and the most predictive pure-language model (SBERT-MPNet-PML). Top:
Voxel-wise unique variance explained by the best vision model. Bottom: Voxel-wise unique vari-
ance explained by the best language model.
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Figure A6: Cortical flat maps showing voxel-wise results of 3-way variance partitioning analysis for
Subject 07 (Figures 2, A2A) across 3 key predictors: macaque IT, the most-predictive pure vision-
model (Dino-ResNet50) and the most predictive pure-language model (SBERT-MPNet-PML). Top:
Voxel-wise unique variance explained by the best vision model. Bottom: Voxel-wise unique vari-
ance explained by the best language model.
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