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ABSTRACT

The lateral visual stream has been recently proposed as a third visual stream, in ad-
dition to the ventral and dorsal streams, specialized for processing dynamic social
content. While prior work has suggested that the regions of this pathway form a
hierarchy representing increasingly abstract information, the computations along
this pathway are still largely unknown. High spatiotemporal resolution data are
particularly informative for characterizing the information flow and thus neural
computations across different brain regions. Using a novel regression approach,
we combine data from EEG, fMRI, and behavior in response to the same videos to
leverage the high temporal resolution of EEG and whole-brain spatial resolution
of fMRI. We find that low-level visual features are represented in early visual cor-
tex with a short temporal latency and are not represented in higher-level regions of
the lateral stream. Further, we find that mid-level features are represented in mid-
level lateral regions with a shorter latency than high-level features in more anterior
regions of the lateral pathway. However, both mid- and high-level features were
decodable in anterior regions of the lateral pathway with a similar latency. To-
gether, these results provide evidence that features of social actions are processed
rapidly in the lateral visual stream in a manner that is consistent with hierarchical
processing, but the lateral stream does not exhibit a strict temporal sequence of
representational transformations along the posterior-to-anterior axis.

1 INTRODUCTION

Perceiving the actions of others is essential in daily life. Among the most common actions we wit-
ness are social actions that involve two or more people, like talking, dancing, or gesturing (1; 2; 3).
The brain primarily represents actions of others in lateral regions including the lateral occipital tem-
poral cortex (LOTC) and the superior temporal sulcus (STS) (2; 3). In these regions, one of the key
organizing features of actions is their sociality, or the extent to which an action is directed at another
person (2; 3; 4). Other related work has identified regions in the STS that respond selectively to
social interactions (5; 6; 7; 8). These findings, combined with research on dynamic face processing,
have led to new ideas about a third visual pathway projecting laterally from primary visual cortex,
through LOTC, to the STS (9). The lateral visual pathway is hypothesized to be separate from the
classic ventral and dorsal visual pathways (10; 11) and to be specialized for understanding dynamic
social content.

Features of social interactions are hypothesized to be hierarchically processed along the lateral visual
pathway (12). This is supported by studies with simple, controlled stimuli showing that there are
increasingly abstract social action representations along the lateral surface. For instance, mid-level
visual cues indicative of social actions, or “social primitives”, such as whether two bodies are facing
(13; 14) or moving toward one another (15) are represented in the body-selective extrastriate body
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Figure 1: Data and method overview A) One example video depicting two person actions (top).
Participants viewed the videos while their neural responses were recoded with EEG (middle-left)
or fMRI (middle-middle), and participants online provided behavioral ratings for eight different
features of the visual and social scene. The EEG data is an example of activity in 10 channels of
the 64 channels used in the regression, the brain depicts a schematic of the lateral stream ROIs that
were predicted from EEG, and the behavioral ratings are example ratings for one video. B) Two-
step regression schematic. Regression 1 is fit between the EEG and fMRI data at each time point
using 5-fold cross-validation (pink arrow in A). The color bands in the fMRI and EEG data represent
the cross-validation folds. The result of this step is the predicted fMRI response for all stimuli in
the training data. Regression 2 is fit between the EEG-predicted fMRI response and the behavioral
ratings of the stimuli (green arrow in A).
Because of license restrictions, the image in (A) is only representative of a video in the stimulus set. The image is “Parents and kids learn together” by DFID - UK

Department for International Development licensed under CC BY 2.0.

area (EBA), a mid-level region in the lateral pathway. More anterior regions along the STS are
selective for more abstract, high-level social action information, including the presence and valence
of social interactions (5; 6; 7; 8). Further, a recent comprehensive fMRI study investigated the
organization of low-to-high level social features. This work found a posterior-to-anterior gradient of
increasingly abstract social feature representations in the lateral visual pathway (6). Related work
has found a temporal hierarchy of social action representations using electroencephalography (EEG)
(1).

While the prior research provides evidence for hierarchical representations of social actions, none
of these studies have been able to address how information flows through these lateral visual regions
due to the use of methods that either have high temporal or high spatial resolution but not both.
To investigate the question of how representations in these regions evolve over time, in the current
study, we use EEG-fMRI fusion to combine the high-temporal resolution of EEG with the high-
spatial resolution of fMRI. EEG-fMRI fusion is a previously developed method (16) that has been
used to investigate how object (17) and social representations (18) evolve in space and time in the
human brain. Here, we make several significant methodological advances to the original EEG-
fMRI fusion approach. We adopt an encoding model approach that (1) links EEG and fMRI in a
cross-validated manner allowing us to determine the generalizability of representations in held-out
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stimuli, and (2) defines a hypothesis space of the tuning profile of different regions of interest (ROIs)
to stimulus features and to EEG at each time point (19; 20).

We combine our previously published fMRI data (6) with new EEG recordings in separate subjects
while they watched the same video clips as the fMRI participants (Figure 1A). Using EEG decoding
and EEG-fMRI fusion, our results support a hierarchy of features in computing social interactions
but also suggest that the lateral stream may not be a strict feedforward hierarchy.

2 RESULTS

2.1 SOCIAL ACTION VIDEOS EVOKE RELIABLE EEG RESPONSES

A group of participants (n = 20) participated in an EEG experiment in which their neural activity
was recorded with a 64-channel EEG, while they viewed short videos that were used in our prior
study of social action perception (6). This stimulus set comprises 250 three-second videos depicting
social actions, which are split into 200 videos for training and 50 videos for evaluation. Here we
maintained the defined train-test split for the stimuli but reduced the videos to the central 500 ms
to facilitate temporal time-locking in EEG. In the EEG experiment, videos in the training set were
repeated four times, and videos in the test set were repeated sixteen times to ensure a high signal-to-
noise ratio of the target data.

After minimal preprocessing, temporal resampling of the EEG data to 400 Hz, and temporal smooth-
ing (see 4.4.1), we estimated the signal quality of EEG data by calculating the split-half reliability
in the test set. Overall, the reliability is significant in the 72–438, 458–622, and 658–800 ms time
ranges, revealing that there is detectable signal in EEG (Figure S5) and that the data are of high
enough quality for the encoding/decoding framework adopted below.

2.2 SOCIAL ACTION FEATURES ARE DECODABLE FROM EEG ALONG A TEMPORAL
HIERARCHY

Our stimulus set includes human behavioral ratings that capture various visual and social scene
features. These rated dimensions include mid-level features about the spatial layout of the scene
and the configuration between people, including descriptions of the scene’s size (spatial expanse),
the proximity of individuals in the video (agent distance), the degree to which the individuals are
facing each other (facingness), and the extent to which an action involves an object (object directed-
ness). As well as high-level features about the social content, including the extent to which people
were engaged in a joint or physical interaction (joint action), the degree of communication between
people (communication), and affective characteristics (valence and arousal). The ratings were ob-
tained using a Likert scale from at least ten subjects, and our prediction target is the average of the
participants’ ratings.

To determine the temporal latency of each of these feature representations, we used an EEG decoding
procedure in which, for each EEG participant and time sample, we used the whole-brain 64-channel
EEG signal to predict the uni-dimensional stimulus features.

Using this approach, we were able to decode all the annotated features in our dataset, except the
extent to which the two people in the video were facing (Figure 2 and Supplemental Figure 6). In
general, we tend to see that mid-level features of the scene and spatial relations among people in
the scene (spatial expanse, tonset = 112 ms, object directedness, tonset = 188 ms, and agent distance,
tonset = 128 ms) have a shorter temporal latency than high-level social features (communication,
tonset = 250 ms, and arousal, tonset = 335 ms), although joint action (tonset = 100 ms) and valence
(tonset = 158 ms) both have relatively short latencies.

Latency estimations are known to be influenced by the overall decodability of a feature. Here, we
see that some features have a higher decoding magnitude than others (e.g., agent distance versus
communication), so we performed an additional analysis to increase our statistical power and min-
imize bias due to overall decodability. To do this, we binned the decoding performance, variance
distribution, and permutation distribution within-participant in 50 ms bins from 0 to 300 ms. We
then averaged each distribution across participants. While this analysis reveals an earlier latency
than the previous analysis for some features (e.g., communication is significantly decodable in the
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Figure 2: Feature decoding from EEG. Decodability of one mid-level (agent distance) and one
high-level (communication) social action feature in our dataset from the EEG signal across time.
Shaded regions are the 95% confidence intervals from bootstrapped variance distributions. Bold
horizontal lines indicate significant decoding (permutation testing, cluster-corrected p < 0.05). The
time leading significant lines indicates significance onset. The vertical dashed lines indicate the
stimulus presentation period. For visualization purposes alone, the prediction time courses were
further smoothed using a 25 ms sliding window. Significant time points are independent of this
smoothing kernel. See Figure S6 for decoding of all features.

150–200 ms time window), the overall trend of earlier decoding for lower-level features holds (Fig-
ure S7).

2.3 EARLY-LATE TEMPORAL DISSOCIATION IN THE LATERAL PATHWAY

To understand the time course of neural processing across the lateral stream, we next used an encod-
ing approach to fuse the EEG data with our previously collected fMRI data (6). At each time point
for each EEG participant, we predicted the average ROI response in fMRI data from each subject.
Our fMRI dataset (6) includes voxel-wise fMRI neural responses (β values) to each video from four
participants. The fMRI data includes both anatomically defined regions of interest (ROIs), such as
the early visual cortex (EVC) and the motion-selective middle temporal area (MT), as well as func-
tionally defined ROIs in the lateral stream. The lateral ROIs consist of the extrastriate body area
(EBA), which processes bodies and their spatial relationships (21; 13), the lateral occipital cortex
(LOC), which is selective for objects (22) and is involved in processing object-directed actions (3),
and posterior and anterior social-interaction selective regions in the superior temporal sulcus (pSTS
and aSTS) (5; 8; 7; 6).

Following the encoding, we averaged the prediction across EEG participants and fMRI participants.
Our results show a dissociation between early activation in the most posterior region (EVC: tonset =
60 ms) and late activation in all other lateral regions of the brain (MT: tonset = 310 ms, LOC: tonset =
130 ms, EBA: tonset = 112 ms, pSTS-SI: tonset = 125 ms, and aSTS-SI: tonset = 115 ms, Figure 3A
and Figure S8). The onset in MT is surprisingly late, and MT has low overall prediction, pointing to
low correspondence between EEG responses and fMRI responses in MT.

From these results, we do not find the classical latency profile of feedforward hierarchical compu-
tations (23; 9) as mid-level regions (EBA and LOC) are significantly predicted at the same time as
anterior regions in the STS, suggesting information in mid- and high-level regions comes online at
the same time.

As with the feature decoding, we again binned the decoding time course into 50 ms intervals from
0 to 350 ms. EVC is first decodable in the 50–100 ms interval, and all other ROIs are decodable by
the 100–150 ms interval, confirming this early-late distinction (Figure S9).

We see similar trends in whole-brain voxelwise encoding analyses, with high EVC prediction by 100
ms, and onset of prediction in all other regions by 150 ms (Figure 3B and Figure S10). Together,
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Figure 3: ROI decoding from EEG. A) Decodability of responses in one early (EVC, green), mid-
level (LOC, blue), and high-level (aSTS-SI, dark blue) lateral stream ROI from the EEG signal
across time. Plotting conventions are the same as Figure 2A. See Figure S8 for the timecourse of all
ROIs. B) The prediction of voxelwise activity in the whole brain across time. Shown are the lateral
(top) and ventral (bottom) views of the right hemisphere in the native space of one representative
fMRI subject. This is shown as a snapshot of encoding performance in 50 ms increments from 0 to
300 ms. Other fMRI participants are visible in Figure S10.

these results suggest that lateral visual regions may not be organized in a strict feedforward hierarchy
as has previously been suggested (6; 9). This is in contrast to the ventral stream, where, by 100 ms,
there is also prediction in posterior ventral temporal regions, suggesting that the ventral stream
may be organized in a more strict feedforward hierarchy than the lateral stream (Figure 3B and
Figure S10).

2.3.1 A SPATIOTEMPORAL HIERARCHY OF SOCIAL ACTION FEATURES ACROSS THE
LATERAL STREAM

Next, we turn to our central analysis that directly asks how information about social actions changes
over space and time using our novel two-step regression method (Figure 1B). Briefly, the two-step
procedure involves predicting the fMRI responses from the 64-channel EEG activity at each time
point. Then we used the stimulus features to predict the EEG-predicted fMRI activity ( ̂f MRItrain).
We scored the regression by predicting the EEG-predicted fMRI activity ( ̂f MRItest ) to the held-out
test videos and then correlating the actual fMRI response ( f MRItest ) in the test set to this predic-
tion at each time point ( ̂f MRItest ). A more detailed description of the procedure is available in
Section 4.4.6.

In addition to the behavioral annotations that were decoded in Section 2.2, we also used AlexNet-
conv2 and motion energy as predictors of the EEG-predicted fMRI data as models of low-level
visual processing (24) and motion activations in MT (25), respectively.
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Figure 4: Joint EEG-feature fMRI encoding. Joint EEG-feature encoding in three select ROIs
in (A) EVC, (B) LOC, and (C) aSTS-SI for a low-level feature (Alexnet-conv2, yellow), mid-level
feature (agent distance, red), and high-level feature (communication, purple). All other plotting
conventions follow those of Figure 2. See Figures S11–S16 for the time course of feature encoding
in each ROI.

Using this method, we find that EVC represents low-level visual and motion features with a short
latency (AlexNet-conv2: tonset = 68 ms, motion energy: tonset = 60 ms, Figure 4A and Figure S11).
However, feature representations in MT are relatively late and have poor overall prediction (motion
energy: tonset = 140 ms and arousal: tonset = 305 ms, Figure S12), which suggests low correspon-
dence between EEG and fMRI signals in MT.

Mid-level lateral regions represent social primitive features later than low-level features in EVC.
In particular, LOC activity was predictable by motion energy (tonset = 268 ms), spatial expanse (
tonset = 160 ms), and agent distance (tonset = 160 ms, Figure 4B and Figure S13), and EBA by
motion energy (tonset = 302 ms, Figure S14).

In contrast, high-level lateral regions in the STS represent both social primitive and social interaction
features. pSTS-SI was predicted by spatial expanse (tonset = 148 ms) and agent distance (tonset = 148
ms, Figure S15) while aSTS-SI was predicted by spatial expanse (tonset = 215 ms), agent distance
(tonset = 150 ms), and communication (tonset = 195 ms, Figure 4C and Figure S16).

The latency of social primitive representations is comparable between regions of LOTC (EBA and
LOC) and STS (pSTS-SI and aSTS-SI), and earlier than the latency of high-level social features.
Thus, while we again find a temporal hierarchy of features (Results 2.2), we find that mid-level
features (i.e., social primitives) are broadly represented in both mid- and high-level lateral regions at
the same time. Importantly, however, social interaction representations in aSTS-SI have a later onset
and peak time than social primitive representations in the STS or elsewhere, supporting hierarchical
feature representations across lateral stream regions (Figure S17).
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3 DISCUSSION

Building on existing theories (3; 9), we hypothesized that the perception of social interactions relies
on hierarchical computations in the lateral visual pathway (12). Here, we examined the spatiotempo-
ral flow of information through lateral visual regions as a unique window into the underlying neural
computations. Using novel methods in EEG-fMRI fusion, we found a temporal hierarchy in feature
decoding—more abstract features were decodable at longer latencies, both across the whole brain
EEG and within the fMRI fused responses in the lateral stream. These results provide novel support
for a spatiotemporal hierarchy of social action features along lateral visual regions.

3.1 EARLY REPRESENTATIONS OF COMMUNICATIVE ACTIONS IN THE STS

We found that communicative interactions are robustly decodable from EEG signals and are repre-
sented in anterior STS, supporting our hypothesis that representing communication among others
is a computational goal of the lateral visual stream (6). Relatedly, we have hypothesized that rep-
resenting the social interactions among others is a visual process (12). Here we show for the first
time that whether or not two people are communicating can be decoded from the human STS within
200 ms of video onset. This fast representation is consistent with estimates of feedforward visual
processing (23; 26), providing novel empirical support for the theory that social interactions are ex-
tracted by the human visual system. While prior work failed to find such rapid decoding in natural
stimuli (27; 1), our ability to detect early social interaction signals seems to be due to the power of
our novel methods in EEG-fMRI fusion and its advantages over whole brain M/EEG decoding (see
below).

3.2 BROAD REPRESENTATIONS OF SOCIAL PRIMITIVE FEATURES ACROSS THE LATERAL
STREAM

Decoding of communication follows shortly after decoding mid-level social features, such as the
distance between agents, which have been referred to as “social primitives” or precursors of social
interaction in prior work (12; 6). This lends further support to the theory that social interactions are
extracted via these mid-level primitives.

Our results, however, find that these representations of social primitives are spatially distributed
across both mid- and high-level lateral stream regions. In a recent transcranial magnetic stimulation
(TMS) study, only EBA was causally implicated in the perception of social primitives, in direct
contrast to nearby regions in LOTC (28). One key difference between Gandolfo et al. (28) and the
current study is the use of dynamic versus static stimuli. It is possible that social primitives of people
in motion are represented broadly, while social primitives in static images are only represented in
the EBA.

Another possible reason that we find broad representation of social primitives in the current study is
that social primitives are correlated with geometric scene structure in the stimulus set (6). As a result,
it may be that scene content, rather than social primitives, is broadly represented throughout the
visual cortex. Previous work did find representations of scene structure and social primitives in STS
regions before controlling for shared variance among features (6). Future analyses controlling for
shared variance among features may elucidate whether the lateral visual stream broadly represents
social primitive features.

3.3 TWO-STEP REGRESSION TO CHARACTERIZE FEATURE REPRESENTATIONS IN SPACE AND
TIME

In the current study, we proposed a novel method for investigating the spatiotemporal dynamics of
representations in the human brain non-invasively. We do this by performing a two-step regression in
which we first predict fMRI responses from whole-brain EEG activity and then use stimulus features
to predict the EEG-predicted fMRI representations. Using this method, we found that only low-level
visual features (features from the second convolutional layer of AlexNet or a motion energy model)
are predictive of EVC responses through time (Figure S 11). This validates the specificity and utility
of the method for investigating spatiotemporal representations in the human brain.
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Somewhat counterintuitively, we find that some features predict activity in some ROIs earlier using
this method than directly decoding the features from the EEG activity. For example, the onset of
communication representations in aSTS-SI was found to be earlier using the two-step regression than
when decoding communication from the whole-brain EEG activity directly (Figures 2 and 4C, F).
As another example, MT was poorly predicted by EEG directly and the onset latency was much later
than would be expected based on electrophysiology (Figures S8) (23), but following the two-step
regression, motion energy prediction of MT is higher and the onset was found to be consistent with
feedforward processing. Together, these results highlight that the two-step regression procedure—in
addition to linking neural signals in space and time—may also effectively denoise the EEG signal
by considering only the information relevant for a given region of interest.

This two-step regression procedure can be applied to any other dataset or question if there are fMRI
and EEG responses for the same stimuli. This neural data can be combined with stimulus features as
is done here, but it could also be extended to other applications such as investigating the time course
of any behavior in a region of interest or investigating how neural networks align with regions
through time. Further, unlike invasive electrophysiology, this method enables the characterization
of the temporal dynamics with dense, whole-brain spatial resolution.

While this is a powerful method to characterize the spatiotemporal dynamics of representations in the
human brain non-invasively, the method is still limited by the noise of the recording methodologies,
particularly EEG. We partially mitigate this limitation by having multiple stimulus repetitions, but it
may be less suited to research questions in which averaging across trials is not possible. The method
is also limited by the poor coverage of EEG signals in deeper cortical regions and sub-cortical
structures. Future research comparing the spatiotemporal profile found via EEG-fMRI fusion with
invasive recordings can shed light on the specificity of this method under different conditions.

3.4 BEYOND FEEDFORWARD HIERARCHIES

Our findings suggest that the processing of social action features from posterior to anterior brain re-
gions does not adhere to a strict feedforward hierarchy. Information in mid- and high-level regions
comes online at similar time points and both regions have representations of mid-level, social primi-
tive features. The broad representation of mid-level features could be explained by skip connections
from EVC to the most anterior regions directly. Alternatively, information in separate but nearby
cortical regions may be blurred due to the limitations of EEG-fMRI fusion described above.

Broadly, our results are in line with prior research indicating that even the ventral visual stream
may not be accurately described by a simple feedforward hierarchy. The hypothesized hierarchy in
the ventral stream in macaques (containing V1, V2, V4, and posterior inferotemporal cortex (IT),
central IT, and anterior IT) (23) is largely based on observations of longer latencies of responses
in more anterior regions and on retinotopic re-representation of the visual field with increasingly
large receptive field sizes (23). However, a large body of work has highlighted that regions along
the ventral visual stream contain many feedback connections and interconnections with dorsal and
lateral regions (29; 30). In light of these complexities, more research is needed to characterize the
anatomical and functional profile of lateral visual regions.

3.5 CONCLUSION

Here, we investigated the spatiotemporal organization of features in regions of the lateral visual
stream. Replicating prior work, we found that communicative actions are represented in the STS
(6), and we shed novel light on the computations underlying social perception. We also find, for the
first time, that communicative interactions are rapidly extracted by the human brain in natural scenes.
Finally, we find strong evidence that social interactions are computed via hierarchical computation
of low- and mid-level social visual features in the lateral visual pathway. Future research should
aim to better characterize the anatomical and functional profile of lateral regions to further refine
our models of the neural basis of human social perception.
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4 METHODS

4.1 REPRODUCIBILITY

For reproducibility, all code is available publicly on GitHub: github.com/Isik-lab
/SIEEG analysis.git.

4.2 STIMULI AND FMRI

4.2.1 STIMULUS SET AND FEATURE ANNOTATIONS

Videos, feature annotations, and fMRI are from our prior dataset (6). Here we shortened the videos
from 3 s to the central 500 ms to facilitate time locking of the EEG signal as in other EEG-fMRI
fusion work (18). The stimulus set includes behavioral annotations of features of the visual and
social scene (see Section 2.2 for a full description of the stimulus features).

Similar to our previous study, in addition to the behavioral ratings, we also extracted the activations
from the second convolutional layer of a pytorch implementation (31) of an ImageNet (32)-trained
AlexNet (33) as a model of early visual processing (24) (referred to throughout as AlexNet-conv2).
The activations were extracted for every frame and then averaged across frames.

Motion energy was estimated with an Adelson and Bergen model (25) implemented in pymoten
(34) using the default pyramid with a temporal window of 10 frames. The motion energy was then
averaged across spatiotemporal windows.

Both AlexNet-conv2 and motion energy were estimated on the full 3 s video because they were
only used to predict the EEG-predicted fMRI activity and participants in the fMRI saw the 3 s
videos. We reduced the dimensionality of AlexNet-conv2 and the motion energy using principal
components (PC) analysis implemented in scikit-learn (35) to the number of samples of the training
set. We learned the PCs in the training set and applied the learned components to the test set.

4.2.2 FMRI

In our prior experiment (6), participants (n = 4) viewed the 3 s videos in the fMRI scanner. The
videos were divided into 200 videos in a training set that were repeated 9-10 times and a 50 video
test set that was repeated 18-20 times. The reliability of the fMRI data was estimated as the split-
half correlation across repetitions for every voxel in the brain. In our prior study as well as in the
current investigation, analyses are always limited to voxels that were determined to have a significant
correlation (p < 0.05, uncorrected).

In addition to the main videos, the participants also completed a battery of functional localizer tasks
to enable functional localization of ROIs in the ventral and lateral stream (see Section 2.3 for a
description of the ROIs investigated in the current study).

4.3 EEG EXPERIMENT

4.3.1 PARTICIPANTS

Participants (n = 21, 5 Males, M = 21.4 years, SD = 2.9 years) gave informed consent prior to
participation in accordance with the Johns Hopkins University Institutional Review Board and were
either given course credit or monetary compensation for their time. One participant was excluded
from subsequent analyses due to excessive movement (final sample, n = 20).

4.3.2 EXPERIMENTAL PROCEDURE

Based on previous studies (18; 1), continuous EEG recordings with a sampling rate of 1000 Hz
were made with a 64-channel Brain Products ActiCHamp system using actiCAP slim electrode caps
in a Faraday chamber. Electrode impedances were kept below 25 kΩ when possible, and the Cz
electrode was used as an online reference.

Participants were seated upright while viewing the videos on a back-projector screen situated ap-
proximately 60 cm away.
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During the experiment, participants viewed 250 500 ms clips of social actions. The training-test split
(200 and 50 videos in train and test sets, respectively) from McMahon et al. (6) was maintained.
Videos in the training set were repeated four times in total, and videos in the test set were repeated
sixteen times.

The experiment consisted of four sections. For a given section, the 200 training videos were ran-
domly divided into four blocks, and the test videos were shuffled and presented in one block. One
section consisted of the four training blocks and the test block repeated four times.

During each block, five “catch” videos were randomly sampled from 50 videos that depicted crowds
of people and were randomly interspersed among the other videos. The participants’ task was to hit
a button on the crowd trials. These trials were not analyzed in any subsequent analyses.

Between blocks, participants were told that they could take a short break to rest their eyes, but that
they should remain still and hit a button when they were ready to continue. Between each of the
four sections, participants were given longer breaks. They were told to rest as long as needed and
announce when they were ready to continue.

Stimuli were presented with an Epson Home Cinema 3800 projector with a 60 Hz refresh rate.
Videos were shown on a black background and subtended approximately 16 x 16 degrees of visual
angle. Between trials, a white fixation cross was displayed that disappeared when the videos began.
Participants were instructed to fixate between trials but were told that they could move their eyes
during the videos. A photodiode was used to accurately track on-screen stimulus presentation times
and account for projector lag. The paradigm was implemented in MATLAB R2021b using the
Psychophysics Toolbox (36).

4.4 ANALYSIS

4.4.1 EEG PREPROCESSING

Minimal EEG data preprocessing was performed using MATLAB R2023b and FieldTrip (37). The
EEG data were aligned to stimulus onset and cut to 1.2 s (0.2 s pre-stimulus to 1 s post-stimulus
onset), baseline-corrected using the 0.2 s prior to stimulus onset, high-pass filtered at 0.1 Hz, and
low-pass filtered to 60 Hz. Data were resampled to 400 Hz and temporally smoothed over five
consecutive samples (12.5 ms windows). Finally, catch trials and false alarm trials were removed.

4.4.2 EEG RELIABILITY

We estimated the signal quality of EEG data by calculating the split-half reliability in the test set.
For each EEG participant, channel, and time sample, even and odd presentations of videos were split
in half and then averaged. The correlation was then computed between the two halves of the data
across videos. The variance of the reliability was estimated using bootstrapped resampling of the
videos 5000 times and recomputing the even-odd correlation. Reliability and variance distributions
were averaged across channels and participants.

4.4.3 FEATURE DECODING

Within each EEG participant at each time point, we used the 64-channel EEG activity to predict
visual and social features using ridge regression. Given the high correlation between the signal
recorded by separate EEG electrodes, we first used principal components analysis (PCA) to rotate
and orthogonalize the EEG-channel features without reducing the dimensionality. The ridge penalty
(varied between 10−5 and 1030) was fit using optimized leave-one-out prediction implemented in
the DeepJuice python package (38) in the training set, and evaluation was performed in the test
set. Performance was evaluated as the correlation between the predicted and actual ratings for each
feature.

When plotting the time course of decoding, we further smoothed the data in using a 25 ms sliding
average window. This was down for visualization purposes alone and is not reflected in any of the
statistical results. This smoothing procedure was done for all other time course plotting.
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4.4.4 ROI RESPONSE DECODING

As for feature decoding (Section 4.4.3), we used the rotated 64-channel EEG activity of each partici-
pant at each time point to predict the average response in each ROI for each of the fMRI participants.

4.4.5 VOXELWISE FMRI ENCODING WITH EEG

To perform whole-brain analyses, we predicted the voxelwise fMRI response following smoothing
to a 12 mm full-width-half-max Gaussian kernel to increase signal-to-noise ratio. We performed
the same regression procedure as in (Section 4.4.4) to predict the voxelwise activity for each fMRI
participant. Visualizations are done by averaging across EEG participants for individual fMRI par-
ticipants.

4.4.6 TWO-STEP EEG-FEATURE FMRI ENCODING

Inspired by the regression procedures used by others (39; 40), we devised a novel regression frame-
work to map between EEG, fMRI, and feature annotations (Figure 1B). The procedure involved two
regression steps. In step 1, we performed five-fold cross-validation from EEG to fMRI in the train-
ing set. We predicted the response for the held-out stimuli and did this across all folds. This results
in a predicted fMRI training set based on the EEG data. In other words, we generated a matrix of the
fMRI signal that was predictable by EEG. In step 2, we fit a regression with a train/test split with the
video annotations (either human ratings or image-computed low-level visual features) as the predic-
tor and the EEG-predicted fMRI response from step 1 as the target. In this way, the method maps
features to the EEG-predicted portion of the fMRI signal. We scored the regression by predicting
the response in the fMRI test set using the held-out test ratings or visual feature representations and
correlating the predicted with the actual response. This procedure allows us to predict the fMRI
response in a shared EEG-rating space.

4.4.7 STATISTICAL ANALYSIS

To estimate the distribution of variance of our model performance, at every time point, we per-
formed bootstrap resampling over the model predictions and the true response over 5000 iterations.
Similarly, to estimate a statistical null distribution, we performed permutation shuffling between the
predicted and true response over 5000 iterations at each time point. We averaged both the boot-
strap and permutation distributions first over EEG participants and then over fMRI participants for
group-level analyses. Group-level variance was estimated as the 95% confidence interval of the
bootstrapped distributions, and group-level significance was the one-tailed test of true relative to
the average null distribution. Significance was cluster-corrected for multiple comparisons using the
maximum cluster sum across time windows and regressions performed, α = 0.05, cluster-setting
α = 0.05.
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5 SUPPLEMENTAL FIGURES
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Figure 5: EEG data reliability. Data reliability in the test set averaged across participants and chan-
nels. Shaded areas are the bootstrapped 95% confidence intervals and solid horizontal lines represent
time windows of significant reliability after cluster correction at a level of p < 0.05. Horizontal lines
mark time clusters of significant reliability (permutation testing, cluster-corrected p < 0.05). As in
Figure 2A data are smoothed in a 25 ms sliding window for visualization alone.
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Figure 6: Decoding of all features from EEG. Decodability of all annotated features from EEG
across time extended from the subset shown in Figure 2A. Plotting conventions are the same as
Figure 2A.
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Figure 7: Latency of all features from EEG decoding. Decodability of annotated from the EEG
in time bins as in Figure 2B extended to all features.

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
(r)

60 ms

EVC

310 ms

MT

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
(r)

130 ms

LOC

112 ms

EBA

200 0 200 400 600 800 1000
Time (ms)

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
(r)

125 ms

pSTS-SI

200 0 200 400 600 800 1000
Time (ms)

115 ms

aSTS-SI

Figure 8: Decoding of all ROIs from EEG. Decodability of responses in all ROIs from the EEG
signal across time extended from Figure 3A.
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Figure 9: Latency of all ROI prediction from EEG decoding. Decodability of ROI activity
recorded in time bins extended from Figure 3B.

Figure 10: Whole brain prediction in other fMRI participants. Plotting conventions are all the
same as Figure 3C, but for (A) sub-01, (B) sub-03, and (C) sub-04 from McMahon et al. (6).
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Figure 11: Time course of joint EEG-feature fMRI encoding of each feature in EVC Extended
to all features from Figure 4A. For visibility, all features are shown on separate subplots.
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Figure 12: Time course of joint EEG-feature fMRI encoding of each feature in MT Related to
main text Figure 4.
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Figure 13: Time course of joint EEG-feature fMRI encoding of each feature in LOC Extended
from main text Figure 4B for al features.
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Figure 14: Time course of joint EEG-feature fMRI encoding of each feature in EBA Related to
main text Figure 4.
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Figure 15: Time course of joint EEG-feature fMRI encoding of each feature in pSTS-SI Related
to main text Figure 4.
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Figure 16: Time course of joint EEG-feature fMRI encoding of each feature in aSTS-SI Ex-
tended from main text Figure 4C for all features.
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Figure 17: Latency of feature prediction in ROIs. Extended from main text Figure 4D–F for all
features and all ROIs.
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